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Fig. 3. Coupled microstrip.
TABLE 1
capacitance this method reference [1] reference {2]
F/m *
Ca, 1 0.9213E-10 0.91658-10 0.9236e-10
€(1,2) -0, 8302E-11 -0.8220E-11 -0. 8494E-11
€2 1) -0. 8302E-11 -0.8220e-11 -0. 8494E-11
C(22) 0.9213E-10 0.9165E-10 0.9236E-10
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Fig. 4. Two conductors in two different dielectric layers.

TABLE II
capacitance this method reference [1] reference [4]
F/m
€, 1) 0. 3697E-10 0. 3651E-10 0.3701E-10
C(1,2) -0. 1584E-11 -0. 1562E-11 -0. 1520B-11
(2,1 -0. 1584E-11 -0. 1562E-11 -0. 1520B-11
€22 0. 2134E-9 0.2099E-10 0. 2108E-9

Example 2: There are two different rectangular conductors in two
dielectric layers above a ground plane as shown in Fig. 4. The results
using this method together with those of [1] and [4] are shown in
Table I1, and the computing speed of this method is also much faster
than those of other methods.

IV. CONCLUSION

A new method for calculating the capacitance matrix of the multi-
conductor interconnects is given. The computing speed is faster than
that of other methods with the same accuracy, and the desired storage
of the computer is also decreased, so this method is effective for

computing the electrical parameters of the interconnects for high-
speed/high-complexity electronic systems.
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Eigenmode Sequence for an Elliptical
Waveguide with Arbitrary Ellipticity

Shan-jie Zhang and Yao-chun Shen

Abstract—Eigenmode sequence for an elliptical waveguide with arbi-
trary ellipticity is studied by directly calculating the parametric zeros of
the modified Mathieu functions of the first kind and their derivatives.
The normalized cutoff wavelength of the lowest 100 successive modes are
presented, and the curvefitting expressions for the determination of the
cutoff wavelength of the lowest 10 order modes are given, which are valid
for the ellipticities ranging from 0.0 to 0.99.

. INTRODUCTION

Elliptical waveguides have wide applications such as radar feed
lines, multichannel communication and accelerator beam tubes. The
determination of the cutoff wavelength of the elliptical waveguide is
one of the most important problems for designing the waveguide or
analyzing the wave propagation in the waveguide. In 1938, Chu [1]
first presented the theory of the transmission of the electromagnetic
waves in elliptical waveguide. Since then some more numerical
results about the cutoff wavelengths in elliptical waveguide have
been obtained [2]-[4]. In 1970, Kretzschmar [5] obtained the curves
of the cutoff wavelengths for the 19 successive modes and the
approximative formula for the eight lowest order modes. Recently
Goldberg [6] calculated the cutoff wavelengths for the six lowest
modes and gave a correction to the field pattern plotted in [1].
In fact, the determination of the cutoff wavelength of an elliptical
waveguide is a problem of calculating the zeros of the modified
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TABLE 1
NORMALIZED CUTOFF WAVELENGTHS FOR AN ELLIPTIC WAVEGUIDE A¢/a

Eccentricity e = 0.1 Eccentricity ¢ = 0.5 Eccentricity e = 0.9
No.
Mode i /a Mode i /a Mode i /a

1 TEcl-1 3.41188201 TEcl-1 3.39447796 TEcl—~1 3.34819934
2 TEs1-1 3.39617177 TEsl-1 2.97448032 TEc2-1 1.82871198
3 TMc0=1 2.60616852 TMc0-1 241960702 TEsi-1 1.56495481
4 TEc2-1 2.05208977 TEc2-1 194968828 TMc0~-1 1.49062515
5 TEs2-1 2.05203202 TEs2—1 1.90795125 TEc3~1 1.26542321
6 TMcl-1 1.63772228 TMcl-1 1.57615210 TEs2—-1 1.22921614
7 TEc0~1 1.63563513 TEc0-1 1.49938950 TMcl-1 1.16070249
8 TMsl-1 1.63361256 TMsl—1 1.46727452 TEs3—-1 0.99860472
9 TEc3—1 1.49183132 TEc3—1 1.40275680 TEc4—1 0.96975846
10 TEs3—1 1.49183109 TEs3-1 1.39790776 TMc2-1 0.93753838
1 TMc2-1 1.22042951 TMc2-1 1.16520501 TEs4—1 0.83397716
12 TMs2-1 1.22037489 TMs2-1 1.13357998 TEc0-1 0.81765942
13 TEcd—1 1.17863600 TEcl~2 1.12835796 TMsl-1 0.80930877
14 TEs4~1 1.17863600 TEc4—1 1.10587635 TEc5—1 0.78724715
15 TEci—2 1.17713084 TEs4—1 1.10529053 TMc3-1 0.78026278
16 TEs1—-2 1.17396194 TEsl-2 1.04785956 TEcl-2 0.71603488
17 TMc0-2 1.13533477 TMc0-2 1.03034970 TEs5~1 0.71232947
18 TMc3~1 0.98234023 TMc3-1 0.92887494 TMs2—-1 0.70828320
19 TMs3~1 0.98233977 TMs3-1 0.92078076 TMca4-1 0.66513122
20 TEc5-1 0.97690644 TEc5~1 0.91607169 TEc6-1 0.66328738
21 TEs5-1 0.97690644 TEs5-1 0.91599927 TEc2-2 0.63319257
22 TEc2-2 0.93464260 TEc2-2 0.89716685 TMs3-1 0.62616630
23 TEs2-2 0.93456961 TEs2-2 0.86420375 TEs6—1 0.61969135
24 TMcl~2 0.89446309 TMci-2 0.84778529 TMc5-1 0.57800441
25 TEc0—2 0.89328695 TEc0~-2 0.80277908 TEe7-1 0.57358748
30 TMsd—1 0.82593477 TMs4—1 0.77560113 TRs7-1 0.54728403
40 TMce5—-1 0.71452786 TEs1-3 0.65137311 TEe5-2 0.46043562
50 TEc2-3 0.62874749 TMs6—1 0.59214061 TMs7-1 0.41637935
60 TMs4—2 0.56644221 TMs4-2 0.53235279 TMcS—1 0.37563007
70 TEs6—2 0.53408707 TEBcl—4 0.49402711 TEc12-1 0.34500891
80 TEc11-1 0.48863340 TMc3-3 0.46038334 TEc4-3 0.32458532
%0 TMsi—4 0.46977544 TMs6—2 0.43415539 TEc5-3 0.30594802
100 TEs8—2 0.44401270 TEc0—4 0.41616560 TMs12~1 0.28669920

Mathieu functions of the first kind, i.e., Sem(&,q) and Ce,, (€, q),
and their derivatives, where the two separate parameters § and ¢, as
will be discussed in the following section, are related to the dimension
size and cutoff wavelength of the elliptical waveguide respectively. In
most of the previous work, the cutoff wavelength were determined
by calculating the zeros € for a given ¢ since it is much easier to
determine the zeros & than the parametric zeros ¢ of the functions.
However. it is not convenient to determine the eigenmode sequence
for an elliptical waveguide with given ellipticity since a large number
of calculations are required. Furthermore, it may also cause omission
of the high order modes in eigenmode sequence since the succession
of the various modes is a function of the ellipticity. Thus we need a
more direct and convenient way to determine the eigenmode sequence
for a given elliptical waveguide.

In this paper, the cutoff wavelength sequence is determined by
directly calculating the parametric zeros ¢ of the modified Mathieu
functions of the first kind and their derivatives. The calculation are
made on an IBM PC-386 using Bessel functions series. The first
100 successive modes are presented for eccentricities 0.1, 0.5 and
0.9. The curve fitting expressions for the determination of the cutoff
wavelength of the 10 lowest order modes are given. The accuracy is
10™* for main mode TE.11, 3x 107* for other modes.

II. OUTLINE OF THE THEORY

Electromagnetic waves propagating in the elliptical waveguide are
the combination of the TM and TE waves. For TM waves, the
longitudinal components of the waves are: H. = 0, E. = ¢; for
TE waves, E, = 0, H. = . Where v is the general solution of
the following wave equation in the orthogonal elliptical coordinate
system

82 82
@'{-8—”24-2(]@05}125—&8?77) = 0. )]

The separate parameter ¢ is defined as

262 N 5
7 Wen =37 2

q =

where a and e are the semi-major axis and ellipticity of the wave-
guide. w and /3 are the wave frequency and phase constant, respec-
tively. Using the method of separation of variables we can obtain the
following solution for the wave equation

ey |cemtaim) Cem(€.q) | j(wi—p=)
WW””)_Lem(qan)} {Sem(f-q)}e S

In these equations, cen, and se,, are ordinary even and odd Mathieu
functions, while Ce,, and Se,, are corresponding modified Mathieu
functions of the first kind and order m. We can see from (3) that
the longitudinal components E, and H. have two different forms
corresponding to even and odd modes. Hence, there are four different
mode types in an elliptical waveguide, denoted as TMcp,, TMqp,,
TE.» and TE,,,. Where the first subscript ¢ (cos-type) and s (sin-
type) represent even and odd modes, while the second subscript m is
related to the order of the modified Mathieu functions of the first kind.

The tangent components of the electric field, which can be obtained
from longitudinal components by applying Maxwell's Equations [4],
[5], should be zero on the wall £ = &, where & is the radial
coordinate of the elliptical boundary. Thus the boundary conditions
can be written as

Cen(&-.q)=0 for TM.,. mode '
Sem(€o,q) =0 for TM.,, mode @
Cel (£0,q) =0 for TE., mode

Sel,(E0.q) =0 for TE:» mode
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TABLE II
CURVEFITTING FORMULAS FOR DETERMINING THE CUTOFF 'WAVELENGTHS

Mode Formula Interval of e
TE,: 1./a= 341257911 — 06960165° ~ 010811761e" — 001551343¢* — 000196037¢' [ 0. 1.0 ]
YTE: A./a = 341257911 — 1.64946e° — .193153¢" — 1.26437¢° + 2.02088¢" — 1.67104¢" [ 0, 09 ]
1./ a = 1.56495481 — 7.2118(1 — )" + 9.5048(1 — )" + 14813701 — )" [09. 0.99]
TM_,: A,/a = 261274057 — .666902¢" —.173694e’ — 1.40916e° +2.1687¢" — 1.87123¢™ [ 0, 0.9 ]
1.7/ a = 149062515 - 7.96272(1 — )™ +12.7149(1 — &)** — 2787471 - )" [0.9, 0.99]
TE: A./a = 205720298 — 515017" + 301521¢* + 285292¢° — .590669¢° + 268172 [ 0. 1.0 ]
TE,: ,/a = 205720298 — 525262" — 0980927¢" — 1.08694e” + 1.72239¢' —1.43919¢® [ 0. 09 1
1,/ a = 122921614 — 727781 — "' +13.3726(1 — )** — 4.88771(1 — """ 109, 0.99]
TMg,: 1./a = 163978796 — 218162 + 058415¢* — 12277 + 212388¢' —1.1275¢"* [ 0, 09 ]
2,70 = 116070249 — 7.91779(1 — 0™ 4+ 16.1757(1 — )'" ~ 7481421 — ™" [0, 09]
TE,: A /a = 163978796 — 415913¢” — 426159¢" — 961653¢° + 1.64945¢' — 11602 [ 0, 09 ]
1,/ a = 0.81765942 — 3.69985(1 — &) ™ + 4.66541(1 — )*” + 35838(1 — )" [09, 0.99]
TM,,: 1 /a = 163978796 — .621608¢" — .150714e" — 693906 + 1.05299' — 896293." [ 0, 0.9 ]
1,/ a = 0.80930877 — 3.77731(1 — &)™ + 5.00489(1 — &)** + 044317401 — )™ [09, 0.99]
TE,,: A,/a = 149557313 - 371402 — 065832¢" + 247781e" + .105781¢" —.181746¢ [ 0, 10 ]
TEg: A /a = 149557313 — 383519." + .127985¢" — 9166e° + 1.50186' —1.23192." [ 0, 09 ]
1,/ a = 099860472 - 6.71145(1 — &)*"™ + 14.0357(1 — &) — 6.78048(1 — )" [0.9, 0.99]

with cosh&, = 1/e. As the parameter ¢ is related to the cutoff
wavelength by (2), and there are a series of ¢ values satisfying above
equations. To avoid ambiguity, a third subscript n, corresponding to
the nth parametric root, is required in the mode designation. Thus
the complete designation of the waves propagating in an elliptical
waveguide is TMcmn, TMemn, TEcmn and TEgp». The normalized
cutoff wavelength can be obtained from Eq. (2) as

Afa= e

(&)

dmn

@mmn is the nth parametric zero of the modified Mathieu functions of
the first kind of the order m or their derivatives.

HI. METHOD AND RESULTS

A. Eigenmode Sequence

As mentioned above, there are four types of eigenmode sequence in
an elliptical waveguide. For a given type TMamn, there is following
relationship among the zeros of the modified Mathieu functions.
The value of the (n+ 1)th zero is larger than that of nth zero of
the modified Mathieu functions, i.€., ¢m,n+1 > ¢mn; the value of
the first zero of the modified Mathieu function of order (m+ 1) is
larger than the zeros of modified Mathieu function of order m, i.e.,
gm+1,1 > gm,1. Thus only one initial value is needed for getting a
type of eigenmode sequence.

The other types of eigenmode sequence TMcmn, TEemn and
TE.m» can be obtained through similar process. The eigenmode
sequence of the elliptical waveguide with a given ellipticity can
finally be determined by comparison. It is obvious from preceding
discussions that no high order modes in the eigenmode sequence
will be omitted by using this method. It should be pointed out
that: the value of the parameter ¢ will vary from 1073 to 10°
when lowest 100 modes with different ellipticity are considered.
Therefore, a combination of bi-section and Regula falsi methods
together with step-variable search method is necessary in order to
calculate effectively the zeros of the modified Mathien functions and
their derivatives.

B. Characteristic Value

It is clear from (4), (5) that the exact computation of the modified
Mathieu functions forms the main difficulty in the study of elliptical
waveguides. These functions can be expanded by hyperbolic func-
tions, Bessel functions and Bessel function products. The modified
Mathieu function is the solution of the modified Mathieu equation

y" — (b—2gcosh28)y =0 ©6)

if b equals to the characteristic value &,,, which can be obtained by
matrix method or following continued fractional method [4]

PR G
i=h- 16—t
b;k=4—i.6‘i—b:36‘i_b_...
b§k+1=1+q—9—(%%%ibt...
b§k+1=1—q—9—i%gg_2_b:..._ )

Once b, has been determined, the expansion coefficients can be
easily obtained from (6) [4] [5]. Equation 7 is only valid for lower
order m and larger value ¢. The instability of the conventional
continued fractional method comes from the fact that one of the
denominators of the continued fraction tends to be zero when
g approaches to some special values. In order to get the exact
characteristic values for larger m and smaller ¢, a modified continued
fractional method is suggested as follow

baktp = (2k +p)°

' s
- ((2k—|—p+2)2—b— (2k+p+4)2—b—"')

¢ ¢
B ((2k+p—2)2—b— (k+p—4)2—b—

q2
d=pr 1= q2/3>" ®
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where
p=0, B=4-b% for b3
p=0, B=4-b0+2¢*/b for b3, ©)
p=1. B=1+4¢q—-b for bgpyy
p=1. B=1-¢g-1b for b3y

The combination of (7) and (8) can provide exact characteristic
values of the modified Mathieu functions with large range of m and

q.

C. Numerical Results

As a check of this method, we calculated 200 successive modes
for elliptical waveguides with different ellipticities. Table. T lists
the lowest 100 successive modes with ellipticities e = 0.1, 0.5
and 0.9. It is obvious from Table. 1 that the eigenmode sequence
is a function of ellipticity, i.e., elliptical waveguide with different
ellipticity has different eigenmode sequence. However, the main
mode of the waveguide is always TE.11. The first high order mode
is TEs11 when ¢ < 0.8546001 while it becomes TE.2; when ¢ >
0.8546001.

As a large number of numerical calculation are required to de-
termine the cutoff wavelength for a given mode and ellipticity, we
presented here the curvefitting expressions for the determination of
the cutoff wavelength of the lowest 10 order modes. The formulas
for the different modes and their ranges of validity are given in Table
1. Compared with previous works [5], [7], the expressions presented
here have higher accuracy and are valid for wider range of ellipticity.

IV. CONCLUSION

We can conclude from above discussion that: 1) the modified
continued fractional method suggested in this paper is suitable to
calculate the characteristic values of the modified Mathieu functions
with arbitrary order m and value ¢. 2) directly calculating the
parametric zeros of the modified Mathieu functions of the first kind
and their derivatives is an effective and easy way to determine the
cutoff wavelength for a given elliptical waveguide, and ensures no
omission of high order modes in the eigenmode sequence. 3) The
normalized cutoff wavelength for the lowest 100 successive modes
are presented, and the curvefitting expressions for the determination
of the cutoff wavelength of the lowest 10 order modes are given,
which have higher accuracy than previous calculations and are valid
for wider range of ellipticity.
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A New Electric Field Integral Equation for
Heterogeneous Dielectric Bodies of Revolution

Mark S. Viola

Abstract—In this paper, a novel electric field integral equation (EFIE)
is developed for rotationally-symmetric heterogeneous dielectric bodies.
This EFIE has several attractive features. Firstly, the azimuthal field
component has been eliminated in this formulation thereby reducing the
number of scalar unknowns from three to two. Secondly, it is a pure-
integral equation in which there are no terms involving derivatives of the
field components. Finally, this description is devoid of any highly singular
kernel which would require a principal-value evaluation of the associated
integral. These attributes render this formulation advantageous for both
computational and theoretical pursuits.

I. INTRODUCTION

Rigorous analysis of electromagnetic phenomena within hetero-
geneous dielectric regions commonly proceeds from an integral or
integro-differential equation for the electric field [1]-[5]. Construction
of such an EFIE relies upon the identification of an equivalent
volume density of polarization current. Inherently, this formulation
is a volume integral equation having three scalar unknowns. Thus,
its solution potentially poses a computationally intensive problem.
Additional complications arise when the EFIE is cast in the form
involving the electric dyadic Green’s function [6]-[9]. However,
the presence of certain symmetries allows the formulation of an
alternative integral equation that provides both computational and
theoretical advantages.

In this paper, a novel electric field integral equation (EFIE) is
developed for heterogeneous dielectric bodies of revolution. It is
assumed that the permittivity profile is azimuthally invariant. By
exploiting the prevailing symmetry, straightforward analysis yields
an EFIE having several appealing attributes. Firstly, the azimuthal
field component is eliminated from the formulation in favor of the
remaining (transverse) components. This reduction in the number of
scalar unknowns from three to two facilitates numerical solution via
standard techniques (e.g., the method of moments). Secondly, it is a
rigorous pure integral equation for the transverse field components as
opposed to an integro-differential one; no terms involving derivatives
of the field components appear. Finally, the singularities of the
kernels within this formulation are sufficiently weak, avoiding the
necessitation of a principal-value integral and the corresponding
depolarizing dyadic [7].

Throughout this paper, it shall be assumed that all media are
linear, isotropic and magnetically homogeneous. Furthermore, the
time dependence is harmonic (¢’**) and is suppressed.

II. VOLUME-SURFACE INTEGRAL EQUATION DESCRIPTION

Attention is focused on Fig. 1, which depicts a dielectric body of
revolution immersed in a uniform surround. A coordinate system is
established such that the z-axis coincides with the axis of revolution.
Open domain V', having boundary surface S with outer unit normal
i, is the region for the dielectric and is electrically characterized
through its permittivity profile e(#). In order to provide a well-posed
problem, it is assumed that the closed region 1" is regular and that ¢ is

Manuscript received October 21, 1993; revised February 28, 1994.

The author is with the Department of Electrical Engineering, University of
Akron, Akron, OH 44325-3904 USA.

IEEE Log Number 9406787.

0018-9480/95$04.00 © 1995 IEEE



