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Fig. 3. Coupled microstrip.

TABLE I

capacitance this method reference [11 reference [21
F/m

.

C(I, 1) O. 9213E-10 O. 9165E-10 0. 9236e-10
C(l, 2) -O. 8302E-11 -O. 8220E-11 -O. 8494E-11
c (2, 1) -O. 8302E-11 -O. 8220e-11 -O. 8494E-11
c (2, 2) O. 9213E-10 O. 9165E-10 O. 9236E-10
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Fig. 4. Two conductors in two dhTerent dielectric layers.

TABLE II

capacitance this method reference [1] reference [41
F/m

C(I, 1) 0, 3697E-10 O. 3651E-10 0. 3701E-10
C(1,2) -0, 1584E-11 -O. 1562E-11 -0. 1520E-11
c (2, 1) -0. 1584E-11 -0. 1562E-11 -0. 1520E-11
c (2, 2) O. 2134 E-9 0. ZO99E-10 0, 2108 E-9

Example 2: There are two different rectangular conductors in two

dielectric layers above a ground plane as shown in Fig. 4. The results

using this method together with those of [1] and [4] are shown in

Table II, and the computing speed of this method is also much faster

than those of other methods.

IV. CONCLUSION

A new method for calculating the capacitance matrix of the multi-

conductor interconnects is given. The computing speed is faster than

that of other methods with the same accuracy, and the desired storage

of the computer is also decreased, so this method is effective for

computing the electrical parameters of the

speed/high-complexity electronic systems.
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Eigenmode Sequence for an Elliptical

Waveguide with Arbitrary Ellipticity

Shan-jie Zhang and Yao-chun Shen

Abstract- E]genmode sequeuce for au elliptical waveguide with arbi-
trary ellipticity is studied by directly calculating the parametric zeros of
the modified Mathieu functions of the first kind and their derivatives.
The normalized cutoff wavelength of the lowest 100 successive modes are
presented, and the curvefitting expressions for the determination of the
cutoff wavelength of the lowest 10 order modes are given, which are valid
for the ellipticities ranging from 0.0 to 0.99.

I. INTRODUCTION

Elliptical waveguides have wide applications such as radar feed

lines, multichannel communication and accelerator beam tubes, The

determination of the cutoff wavelength of the elliptical waveguide is

one of the most important problems for designing the waveguide or

analyzing the wave propagation in the waveguide. In 1938. Chu [1]

first presented the theory of the transmission of the electromagnetic

waves in elliptical waveguide. Since then some more numerical

results about the cutoff wavelengths in elliptical waveguide have

been obtained [2]–[4]. In 1970, Kretzschmar [5] obtained the curves

of the cutoff wavelengths for the 19 successive modes and the

approximative formula for the eight lowest order modes. Recently

Goldberg [6] calculated the cutoff wavelengths for the six lowest

modes and gave a correction to the field pattern plotted in [1].

In fact, the determination of the cutoff wavelength of an elliptical

waveguide is a problem of calculating the zeros of the modified
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TABLE I

NORMALIZED CUTOFF WAVELENGTHS FOR AN ELLIPTIC W,wEmrmmA c/a

Eccentricity e = 0.1 Exentricity c = 0.5
No.

&cantricity e = 0.9

Mode 1=/0 Mode Ae/O Mo6e At/a

1 TE21-1 3.41188201 ml-l 3.39447796 T&l-l

2

3.34819934

Tasl-1 3.39617177 TEsl-1 2.9744803’2 TEC2-1 1.82871198

3 TM03-1 2.60616852 TMco-1 2.41960702 TEM-1

4

1.56495481

T&2-l 2.05208977 ‘rTk2-l 1.94968823 Two-l 1.49062515

5 TE$2-I 2.05m3202 TES2-I 1.90795125 TEC3-1 1.26542321

6 TMcl-1 1.63772228 TMC1-1 1.57615210 T&2-l

7

1.22921614

T&0-l 1.63363513 TEcO-1 1.49938950 TMcl-1 1.16070249

8 TMsI-1 1.63361256 TMsl-1 1.46727452 T~3–1 0.99860472
9 Tac3-1 1.49183132 TEc3-1 1.40275680 ‘rrw-l 0.96975846
10 mm–l 1.49183109 m3-1 1.397~776 TMC2–1 0,93753838
11 TMc2-1 1.22042951 TMC2-I 1.16520501 TES4-I 0.83397716

12 Thw-1 1.22037489 ‘rM52-l 1.13357998 TEcO-1

13

0.81765942

T&4-l 1.17863600 TEc1-2 1.12835796 TMsl-1 0.80930877

14 Ta64-1 1.1786364)0 TE&4-1 1.10587635 TEC5-1 0.78724715

15 TEC1-2 1.17713084 TES4-I 1.10529053 TMC3–1 0.78026278

16 TEsl-2 1.17396194 TS?$l-2 1.04785956 TEC1-2

17

0.71603488

TMM-2 1.13533477 TMCO-2 1.03034970 TEs5-1 0.71232947

18 TMC3-1 0.98234023 TMC3-I 0.92887494 TMS2-1 0.70828320

19 TMS3-1 0.98233977 TM$3-1 0.9m78076 ‘mm+]

20

0.66513122

TEC5-1 0.97690644 TEC5-1 0.91607169 TE46-I

21

0.66328788

‘373s5-1 0.97690644 TFs5-I 0.91599927 ‘TF42-2 0.63319257

22 Trk2-2 0.93464260 TEC2-2 0.89716685 TMS3-1 0.62616630

23 Tas2-2 0.93456961 Ta42-2 0.86420375 TEs6-1 0.61969135

24 TMcl -2 0.89446309 TMCI-2 0.84778529 TMC5-I 0.57800441

25 TEcO-2 0.89328695 lTM3-2 0.80277908 Tik7-1 0.57358748

30 TMS4-1 0.82593477 TMS4-1 0.77560113 TEs7-1 0.54728403

40 TMC5-1 0.71452786 TE.S1-3 0.65137311 TE.z5-2 0.46043562

50 TEC2-3 0.62874749 TMS6-I 0.59214061 TMS7–1 0.41637935

60 TMS4-2 0.56644221 TMS4-2 0.53235279 TMC9-I

70
0.37563037

Tas6-2 0.53408707 Tacl-4 0.49402711 TEc12-I 0.34500891

80 TEc1 1–1 0.48863340 TMC3-3 0.46038334 TEc4-3

90

0,32458532
TMS1-4 0.46977544 TMs6-2 0.43415539 TEc5-3

100 TESS-2

0.30594802

0.44401270 TEcO-4 0.416165&3 TMS12-1 0.28669920

Mathieu functions of the first kind, i.e., Se~(<, g) and Ce~, (&, q), The separate parameter is defined

and their derivatives, where the two separate parameters < and y, as

will be discussed in the following section, are related to the dimension

size and cutoff wavelength of the elliptical waveguide respectively. In
~_ a~2

(UJzep

most of the previous work, the cutoff wavelength were determined

by calculating the zeros < for a given q since it is much easier to

determine the zeros & than the parametric zeros q of the functions.

However, itisnot convenient todetermine theeigenmode sequence

for an elliptical waveguide with given ellipticity since a large number

of calculations are required. Furthermore, it may also cause omission

of thehigh order modes ineigenmode sequence since the succession

of the various modes is a function of the ellipticity. Thus we need a

more direct and convenient way to determine the eigenmode sequence

for a given elliptical waveguide.

In this paper, the cutoff wavelength sequence is determiried by

directly calculating the parametric zeros q of the modified Mathieu

functions of the first kind and their derivatives. The calculation are

made on an IBM PC-386 using Bessel functions series. The first

100 successive modes are presented for eccentricities 0.1, 0.5 and

0.9. The curve fitting expressions for the determination of the cutoff

wavelength of the 10 lowest order modes are given. The accuracy is

10–’ for main mode TEC1l, 3X 10–’ for other modes.

II. OUTLINE OF THE THEORY

Electromagnetic waves propagating in the elliptical waveguide are

the combination of the TM and TE waves. For TM waves, the

longitudinal components of the waves are: H, = O, E, = ~; for

TE waves, Ez = O, H, = $. Where @ is the general solution of

the following wave equation in the orthogonal elliptical coordinate

system

[

(’32 (92 1~+ W+2q(cosh2<–cos2q) d=O. (1)

as

– /32) (2)

where a and e are the semi-major axis and ellipticity of the wave-

.guide, u and 13 are the wave frequency and phase constant, respec-

tively. Using the method of separation of variables we can obtain the

following solution for the wave equation

Inthese equations, ce~ andse~ areordinary even andodd Mathieu

functions, while Ce~ and Se~ arecorresponding modified Mathieu

functions of the first kind and order m. We can see from (3) that

the longitudinal components E, and H, have two different forms

corresponding toevenand odd modes. Hence, there are four different

mode types in an elliptical waveguide, denoted as TMC~, TM, ~,

TEL~ and TE,~. Where the first subscript c (cos-type) and s (sin-

type) represent even and odd modes, while the second subscript m is

related to the order of the modified Mathieu functions of the first kind.

The tangent components of the electric field, which can be obtained

from longitudinal components byapplying Maxwell's Equations [4],

[5], should be zero on the wall & = <., where & is the radial

coordinate of the elliptical boundary. Thus the boundary conditions

can be written as

Cem(fO. q) = O for TMCm mode

Se,n(<o, q) = O for TM,~ mode

Ce~(~O,q) = O for TE,-m mode
(4)

Sek(co,q)=o for TEs~ mode
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TABLE II

CURVEFITTING FORMULAS FOR DETERMINING THE CUTOFF WAVELENGTHS

Mode Formula Interval of e

229

‘TEc,,: At/a = 3.41257911 -.069~i65c' -.010811761e4 -.@1551343e` -.~l9@37e'

‘7X,,,: lc/a = 3.41257911 -l.W94&' -.19315U4- l.2@37e` +2.02088c' -l.67lW''

it/a = l.5@95481 -7.2118(l -e)'''x +9.~8(l -e)-+ .l48l37(l-e)u''

TM=,,: ic/a=2.6l27M57-.M69O&1-.l7369&"-l.N9l&c+2.l687e'-l.87l23ew

lc/a= l.49062515 -7.96272( l-e)*"u +12.714Xl-e)w -2.78747( l-e)un

TEm,: .Lc/a = 2.05720298 -.515017e' +.301521e4 +.~529&` -.59OM9e'+.2@l7&'*

TE=,: lc/a = 205720298- .5252ti' -.0980927e' -l.0869ti` +1.72239e' -l.439l9e'*

Jc/a = l.22921614 -7.2778( I-e)& 'x+13.3726(l -e)w-4.88771(l -e)-

TA4C,,: At/a = l.63978796 -.21816ti* +.058415e' -l. Z77e`+2.1238&' -l.7275e''

.Lc/a= l.lW70249- 7.91779(l -e)&'x+ 16.1757(l-e)ti -7.48 l42(l-e)w'

TEO, : .lc/a= 1.639787%–.415913e’–.426159e4 –.%165U’+1.64945e’ -l.l6O2e”

lc/11=0.81765942 –3.69985(1–e)’~ +4.66541(1–e)*x +.35838(1–e)O’”

TM.,,: At/a= 1.63978796–.62l608e’-.l5O7l6939CUe3+CUe’+ 1.05299e’–.896293c”

Ac/o=0.80930877 –3.77731(1–e)L’” + 5.00489(1 – e)’- + .0443174(1 – e)’’”

TEO, : At/a = l.49557313 -.37140U' -.06583%4+ .U7781e` +.1 O578le'-.l8l74&''

TEJ,,: lc/a = L49557313-.383519e1+.127983e4 –.9166e’+1.50186#’ -l.23193e’0

1=/4 - 0.998W72- 6.71145(l -e)*"'u +14.0357(l -c)0x-6.78W8(l -e)0'''

with cosh~o = l/e. As the parameter q is related to the cutoff

wavelength by (2), and there area series of q values satisfying above

equations. To avoid ambiguity, a third subscript n, corresponding to

the nth parametric root, is required in the mode designation. Thus

the complete designation of the waves propagating in an elliptical
.

wavegulde 1s TMC~~, TMS~n, TEc~ ~ and TES~~. The normalized

cutoff wavelength can be obtained from Eq. (2) as

q~n is the nth parametric zero of the modified Mathieu functions of

the first kind of the order m or their derivatives.

III. METHOD AND RESULTS

A. Eigenmode Sequence

As mentioned above, there are four types of eigenmode sequence in

an elliptical waveguide. For a given type TMs~n, there is following

relationship among the zeros of the modified Mathieu functions.

The value of the (n+ l)th zero is larger than that of nth zero of

the modified Mathieu functions, i.e., q~, ~+1 > y~,~; the Value of

the first zero of the modified Mathieu function of order (m+ 1) is

larger than the zeros of modified Mathieu function of order m, i.e.,

q~+l, I > g~, 1. Thus only one initial value is needed for getting a

type of eigenmode sequence.

The other types of eigenmode sequence TM~~ ~, TE~~~ and

TE,rnn can be obtained through similar process. The eigenmode

sequence of the elliptical waveguide with a given ellipticity can

finally be determined by comparison. It is obvious from preceding

discussions that no high order modes in the eigenmode sequence

will be omitted by using this method. It should be pointed out

that the value of the parameter g will vary from 10–3 to 103

when lowest 100 modes with different ellipticity are considered.

Therefore, a combination of hi-section and Regula falsi methods

together with step-variable search method is necessary in order to

calculate effectively the zeros of the modified Mathieu functions and

their derivatives.

[ 0. Lo ]

[ o, 0.s1 ]

[ 0.9, 0.99]

[ o, 0.s1 ]

[ 0.9, 0.s19]

[ 0. 1.0

[ 0, 0.s1

[0.9, 0.99

[ 0, 0.s1

[0.9, 0.s19

[ 0, 0.9

[0.9. 0.99

[ 0, 0.$1

[ 0.9, 0.99

[ 0, 1.()

[ 0, 0.9

[0.9. 0.99

B. Characteristic Value

It is clear from (4), (5) that the exact computation of the modified

Mathieu functions forms the main difficulty in the study of elliptical

waveguides. These functions can be expanded by hyperbolic func-

tions, Bessel functions and Bessel function products. The modified

Mathieu function is the solution of the modified Mathieu equation

!/” - (b - 2q cc,sh 2&)y = O (6)

if b equals to the characteristic value b~, which can be obtained by

matrix method or following continued fractional method [4]

2q2 q2
b;k=– — —

4–b– T6–b– ”””

b:k=4–~–~
16–b--36–b–”””

(7)

Once b~ has been determined, the expansion coefficients can be

easily obtained from (6) [4] [5]. Equation 7 is only valid for lower

order m and larger value q. The instability of the conventional

continued fractional method comes from the fact that one of the

denominators of the continued fraction tends to be zero when

q approaches to some special values. In order to get the exact

characteristic values for larger m and smaller q, a modified continued

fractional method is suggested as follow

bin+, = (2k + P)z

(8)
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where

p = o, B=4–b for b~h

p=O, B=4–b+2q2/b for b~k

p=l. B=l+y–b for b~k+l
(9)

p=l. B= I–q–b for b~k~l

The combination of (7) and (8) can provide exact characteristic

values of the modified Mathieu functions with large range of m and

q.

C. Nume~ical Results

As a check of this method, we calculated 200 successive modes

for elliptical wave,guides with different ellipticities. Table. I lists

the lowest 100 successive modes with ellipticities e = 0.1, 0.5

and 0.9. It is obvious from Table. I that the eigenmode sequence

is a function of ellipticity, i.e., elliptical waveguide with different

ellipticit y has different eigenmode sequence. However, the main

mode of the waveguide is always TE.11. The first high order mode

is TE,l 1 when e < 0.8546001 while it becomes TE,21 when e >

0.8546001.

As a large number of numerical calculation are required to de-

termine the cutoff wavelength for a given mode and ellipticity, we

presented here the curvefitting expressions for the determination of

the cutoff wavelength of the lowest 10 order modes. The formulas

for the different modes and their ranges of validity are given in Table

11. Compared with previous works [5], [7], the expressions presented

here have higher accuracy and are valid for wider range of ellipticity.

IV. CONCLUSION

We can conclude from above discussion thati 1) the modified

continued fractional method suggested in this paper is suitable to

calculate the characteristic values of the modified Mathieu functions

with arbitrary order m and value q. 2) directly calculating the

parametric zeros of the modified Mathieu functions of the first kind

and their derivatives is an effective and easy way to determine the

cutoff wavelength for a given elliptical waveguide, and ensures no

omission of high order modes in the eigenmode sequence. 3) The

normalized cutoff wavelength for the lowest 100 successive modes

are presented, and the curvefitting expressions for the determination

of the cutoff wavelength of the lowest 10 order modes are given,

which have higher accuracy than previous calculations and are valid

for wider range of ellipticity.
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A New Electric Field Integral Equation for

Heterogeneous Dielectric Bodies of Revolution

Mark S. Viola

Abstract-In this paper, a novel electric field integral equation (EFIE)

is developed for rotationally-symmetric heterogeneous dielectric bodies.

This EFIE has several attractive features. Firstly, the azimuthal field
component has been eliminated in this formulation thereby reducing the

number of scalar unknowns from three to two. Secondly, it is a pure-
integral equation in which there are no terms involving derivatives of the
field components. Finally, this description is devoid of any highly singular
kernel which would require a principal-value evaluation of the associated

integral. These attributes render this formulation advantageous for both
computational and theoretical pursuits.

I. INTRODUCTION

Rigorous analysis of electromagnetic phenomena within hetero-

geneous dielectric regions commonly proceeds from an integral or

integro-differential equation for the electric field [1 ]–[5]. Construction

of such an EFfE relies upon the identification of an equivalent

volume density of polarization current. Inherently, this formulation

is a volume integral equation having three scalar unknowns. Thus,

its solution potentially poses a computationally intensive problem.

Additional complications arise when the EFIE is cast in the form

involving the electric dyadic Green’s function [6]–[9]. However,

the presence of certain symmetries allows the formulation of an

alternative integral equation that provides both computational and

theoretical advantages.

In this paper, a novel electric field integral equation (EFIE) is

developed for heterogeneous dielectric bodies of revolution. It is

assumed that the permittivity profile is azimuthally invariant. By

exploiting the prevailing symmetry, straightforward analysis yields

an EFIE having several appealing attributes. Firstly, the azimuthal

field component is eliminated from the formulation in favor of the

remaining (transverse) components. This reduction in the number of

scalar unknowns from three to two facilitates numerical solution via

standard techniques (e.g., the method of moments). Secondly, it is a

rigorous pure integral equation for the transverse field components as

opposed to an integro-differential one; no terms involving derivatives

of the field components appear. Finally, the singularities of the

kernels within this formulation are sufficiently weak, avoiding the

necessitation of a principal-value integral and the corresponding

depolarizing dyadic [7].

Throughout this paper, it shall be assumed that all media are

linear, isotropic and magnetically homogeneous. Furthermore, the

time dependence is harmonic (eJ-i ) and is suppressed.

II. VOLUME-SURFACE INTEGRAL EQUATION DESCRIPTION

Attention is focused on Fig, 1, which depicts a dielectric body of

revolution immersed in a uniform surround. A coordinate system is

established such that the z-axis coincides with the axis of revolution.

Open domain V, having boundary surface S with outer unit normal

fi, is the region for the dielectric and is electrically characterized

through its permittivity profile e(F’). In order to provide a well-posed

problem, it is assumed that the closed region ~ is regular and that c is
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